The Magic Carpet, Getting Back Home

Suppose you are now in a three-dimensional world for the carpet ride problem, and you have three modes of transportation:

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{l}
6 \\
3 \\
8
\end{array}\right] \quad \vec{v}_{3}=\left[\begin{array}{l}
4 \\
1 \\
6
\end{array}\right]
$$

You are only allowed to use each mode of transportation once (in the forward or backward direction) for a fixed amount of time (c_{1} on \vec{v}_{1}, c_{2} on \vec{v}_{2}, c_{3} on \vec{v}_{3}).

1. Find the amounts of time on each mode of transportation (c_{1}, c_{2}, and c_{3}, respectively) needed to go on a journey that starts and ends at home or explain why it is not possible to do so.
2. Is there more than one way to make a journey that meets the requirements described above? (In other words, are there different combinations of times you can spend on the modes of transportation so that you can get back home?) If so, how?
3. Is there anywhere in this 3D world that Gauss could hide from you? If so, where? If not, why not?
4. What is span $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}6 \\ 3 \\ 8\end{array}\right],\left[\begin{array}{l}4 \\ 1 \\ 6\end{array}\right]\right\}$?

Linearly Dependent \& Independent (Geometric)

We say the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly dependent if for at least one i,

$$
\vec{v}_{i} \in \operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{i-1}, \vec{v}_{i+1}, \ldots, \vec{v}_{n}\right\} .
$$

Otherwise, they are called linearly independent.

19
Let $\vec{u}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \vec{v}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and $\vec{w}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
19.1 Describe $\operatorname{span}\{\vec{u}, \vec{v}, \vec{w}\}$.
19.2 Is $\{\vec{u}, \vec{v}, \vec{w}\}$ linearly independent? Why or why not? Let $X=\{\vec{u}, \vec{v}, \vec{w}\}$.
19.3 Give a subset $Y \subseteq X$ so that span $Y=$ span X and Y is linearly independent.
19.4 Give a subset $Z \subseteq X$ so that span $Z=\operatorname{span} X$ and Z is linearly independent and $Z \neq Y$.

Trivial Linear Combination
The linear combination $\alpha_{1} \vec{v}_{1}+\cdots+\alpha_{n} \vec{v}_{n}$ is called trivial if $\alpha_{1}=\cdots=\alpha_{n}=0$. If at least one $\alpha_{i} \neq 0$, the linear combination is called non-trivial.

20

$$
\text { Recall } \vec{u}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \vec{v}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \text { and } \vec{w}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

20.1 Consider the linearly dependent set $\{\vec{u}, \vec{v}, \vec{w}\}$ (where $\vec{u}, \vec{v}, \vec{w}$ are defined as above). Can you write $\overrightarrow{0}$ as a non-trivial linear combination of vectors in this set?
20.2 Consider the linearly independent set $\{\vec{u}, \vec{v}\}$. Can you write $\overrightarrow{0}$ as a non-trivial linear combination of vectors in this set?

We now have an equivalent definition of linear dependence.

